Lower Carbon Cement and Net-Zero Concrete

Waste Management Association of BC February 23, 2023

> Cement Association of Canada

Introduction

Ken Carrusca, P.Eng. Vice President, Environment & Marketing Cement Association of Canada Suite 400, 744 West Hastings Street Vancouver, BC V6C 1A5 Cell: 1-604-839-6627 Email: <u>KCarrusca@Cement.ca</u> Twitter: @KenCarrusca

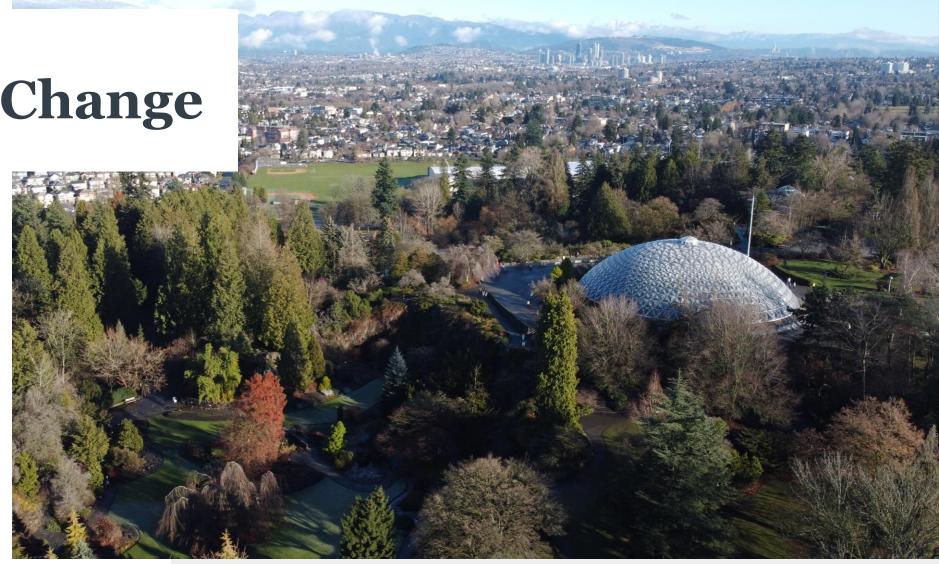
The voice of Canada's cement industry

Welcome to the Cement Association of Canada, the voice of Canada's cement industry. Together with our members and partners in the concrete sector, we're committed to making concrete a net-zero material of choice.

We're helping to build a better, greener future.

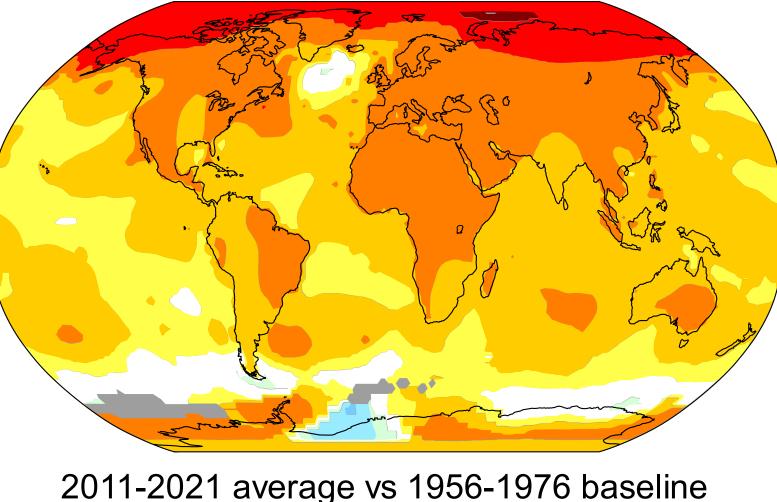
"Canada's cement and concrete industry are leaders in the fight to stop climate change." – Adam Auer, President and CEO, CAC

www.Cement.ca


Content

Climate Change

- Cement Manufacturing Process
- Concrete
- Decarbonizing Cement and Concrete
- Portland Limestone Cement (PLC) and SCMs
- C&D Recycling Concrete, Lower Carbon Fuels
- Thank you


Climate Change

Temperature change in the last 50 years

2020 to 2023

COVID-19 War in Ukraine Climate Change

-1.0 -0.5 -0.2 +0.2 +0.5 +1.0 +2.0 +4.0 °C

-1.8 -0.9 -0.4 +0.4 +0.9 +1.8 +3.6 +7.2 Page 6

Climate Change

"...four pillars of modern civilization: cement, steel, plastics, and ammonia...", page 94

AUTHOR OF NUMBERS DON'T LIE

Vaclav Smil

The Science Behind How We Got Here and Where We're Going

How the World Really Works

\$17 eBook \$29 Amazon.ca

Content

- Climate Change
- Cement Manufacturing Process
- Concrete
- Decarbonizing Cement and Concrete
- Portland Limestone Cement (PLC) and SCMs
- C&D Recycling Concrete, Lower Carbon Fuels
- Thank you

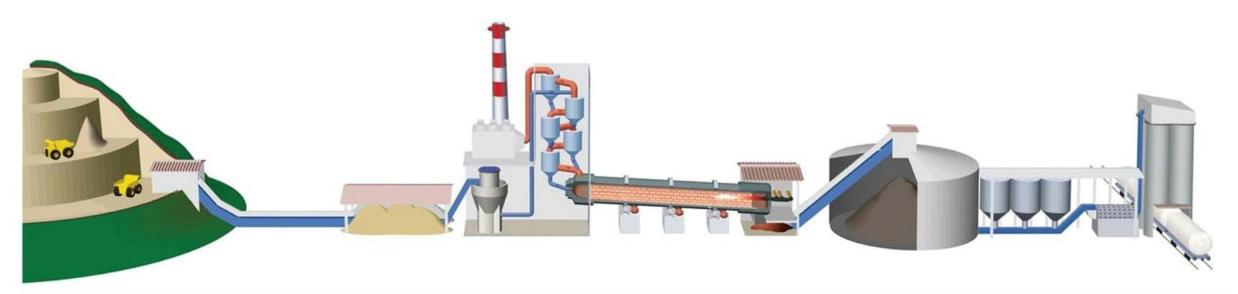
Cement and concrete industry in BC

Cement Manufacturing Plants

• Heidelberg / Lehigh, Delta and Lafarge, Richmond

Concrete Operations

- 135 "ready-mixed" concrete facilities throughout BC
- 17 precast concrete producers


Cement is a Strategic Local Asset

- Cement will continue to be required in all Metro Vancouver / BC infrastructure
- Want to see continued support for **locally produced cement and concrete** in housing, water & sewer utilities, public transportation, renewable energy, industry
- COVID-19 has highlighted the need for domestic manufacturing

Jobs and Investment

- Supports more than 23,000 direct and indirect jobs in BC
- \$11 billion in direct, indirect and induced economic impact

How cement is made

Quarrying

Limestone and small amounts of sand and clay are extracted, usually from a quarry located near the cement manufacturing plant.

Raw Materials Preparation

The extracted materials are analyzed, blended with additional mineral components depending on the type of limestone available, and finely ground for further processing.

Clinker Production

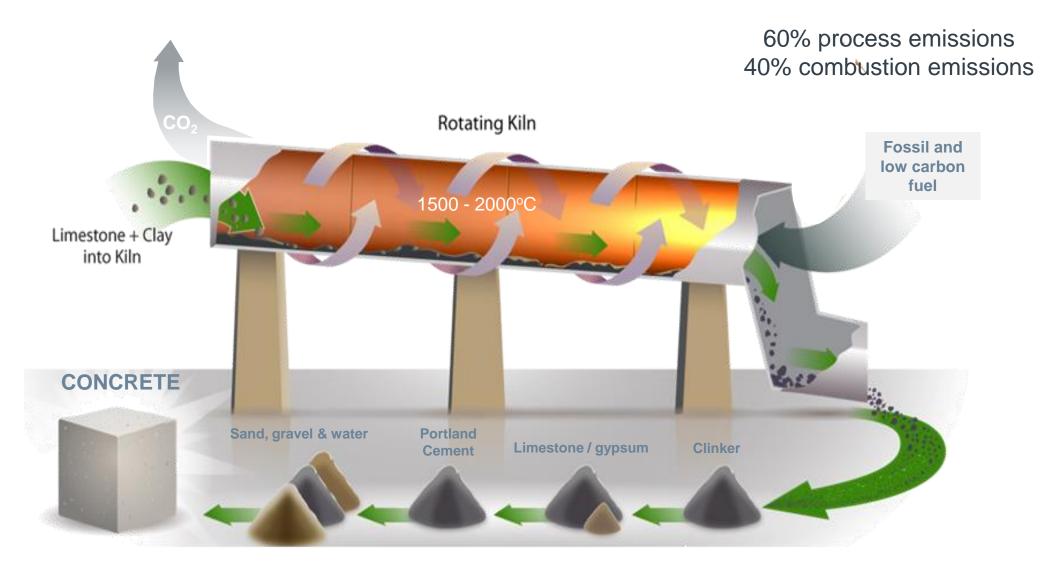
The materials are heated in a kiln reaching a temperature of 1,470°C. The heat transforms the materials into a molten product called clinker, which is then rapidly cooled.

Cement Grinding and Distribution

The clinker is stored and then finely ground. Gypsum is added to control setting time, along with supplementary cementing materials, such as fly ash or slag, to obtain a fine powder called cement, with the desired properties of strength and chemical resistance.

Lafarge, Richmond, BC

all the second shall be



Heidelberg / Lehigh, Delta, BC

. Let P. R. R. D.

Cement and concrete production

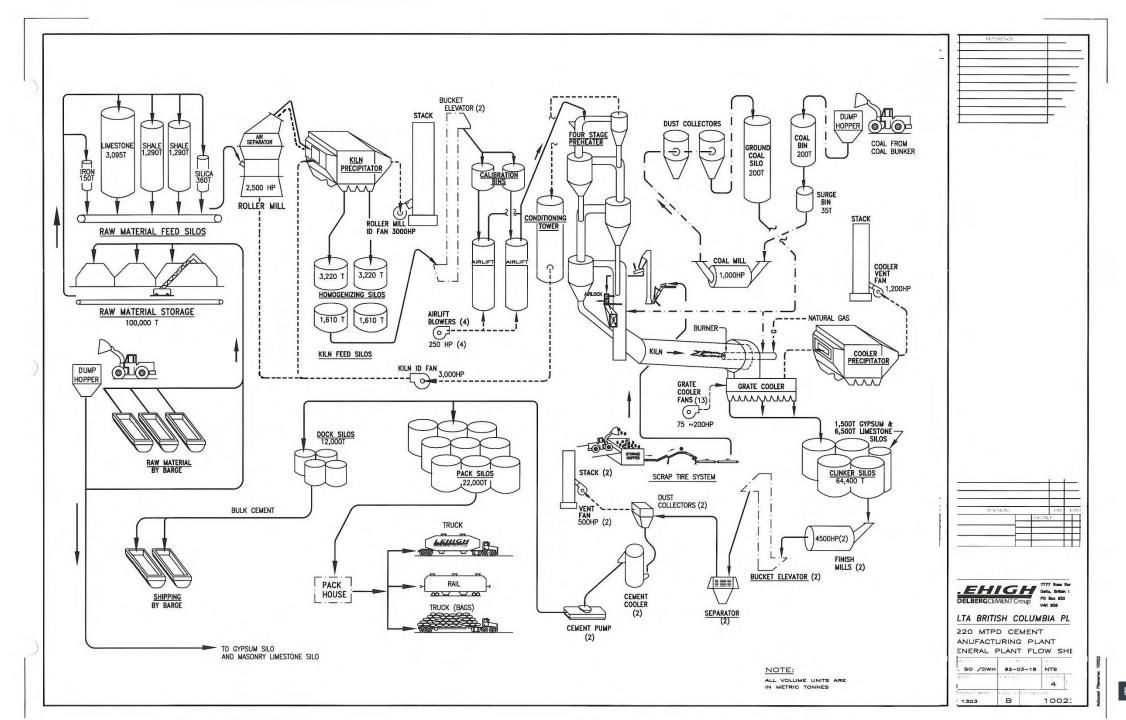
GHGs from cement production

- Cement production is energy intensive
- GHGs produced both from combustion and process
- Cement production is responsible for about 8% of worldwide GHG emissions
- In Canada, cement production accounts for about 1.5% of Canada's total GHG inventory
- Options to reduce GHG emissions:
 - Produce lower carbon intensity cement (e.g. PLC, blended cement)
 - Transition from fossil fuels (coal, natural gas) to lower carbon and biogenic fuels (e.g. urban woodwaste, wastewater biosolids)
 - capture CO₂ emissions, including irreducible process emissions
 - Use higher levels of supplementary cementitious materials (SCMs)
 - Use concrete effectively in construction
 - Maximize re-carbonation of concrete at end-of-life

Cement Kiln

Raw Materials

Limestone



Fuel

Burner

Cement Chemistry

The main constituents in cement powder are:

3CaO · SiO₂ (tri-calcium silicate)

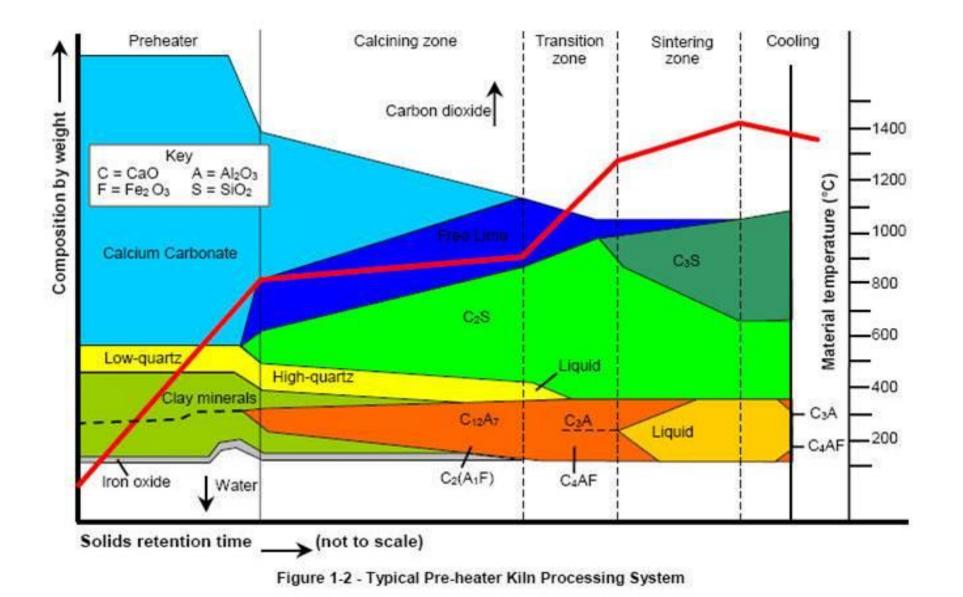
2CaO · SiO₂ (di-calcium silicate)

 $3CaO \cdot Al_2O_3$ (tri-calcium aluminate)

4CaO · Al₂O₃ · Fe₂O₃ (tetra-calcium aluminoferrite)

Abbreviations: C = CaO, $S = SiO_2$, $A = AI_2O_3$, $F = Fe_2O_3$, $H = H_2O_3$

The main constituents in cement: C₃S, C₂S, C₃A, C₄AF


Source: Dr. L.C. Brown, CHML 242, UBC Applied Science, 1989

Cement Types

TYPE	10	20	30	40	50
C ₃ S	53%	47%	58%	26%	43%
C ₂ S	24%	32%	16%	54%	37%
C ₃ A	8%	3%	8%	2%	2%
C ₄ AF	8%	12%	8%	12%	10%
	Most Common	Lower Heat	High Early Strength	Low Heat	Suphate Resisting

Source: Dr. L.C. Brown, CHML 242, UBC Applied Science, 1989

Cement Phase Diagram

Content

- Climate Change
- Cement Manufacturing Process

Concrete

- Decarbonizing Cement and Concrete
- Portland Limestone Cement (PLC) and SCMs
- C&D Recycling Concrete, Lower Carbon Fuels
- Thank you

Concrete

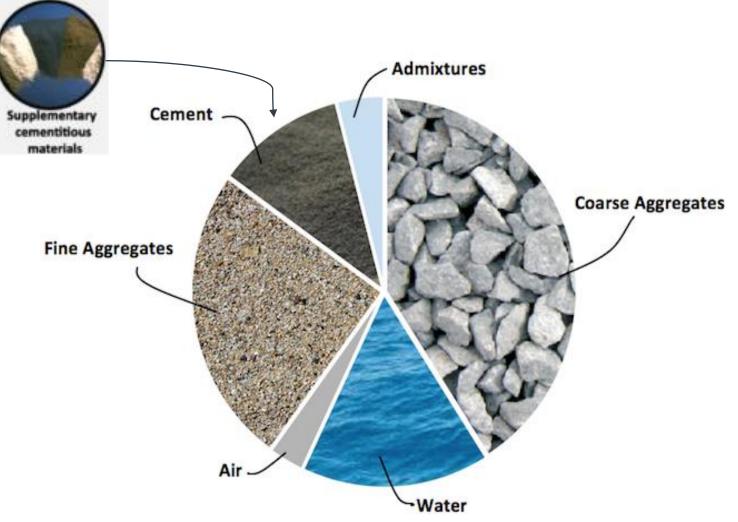
Cement and concrete industry in BC

Cement Manufacturing Plants

• Heidelberg / Lehigh, Delta and Lafarge, Richmond

Concrete Operations

- 135 "ready-mixed" concrete facilities throughout BC
- 17 precast concrete producers

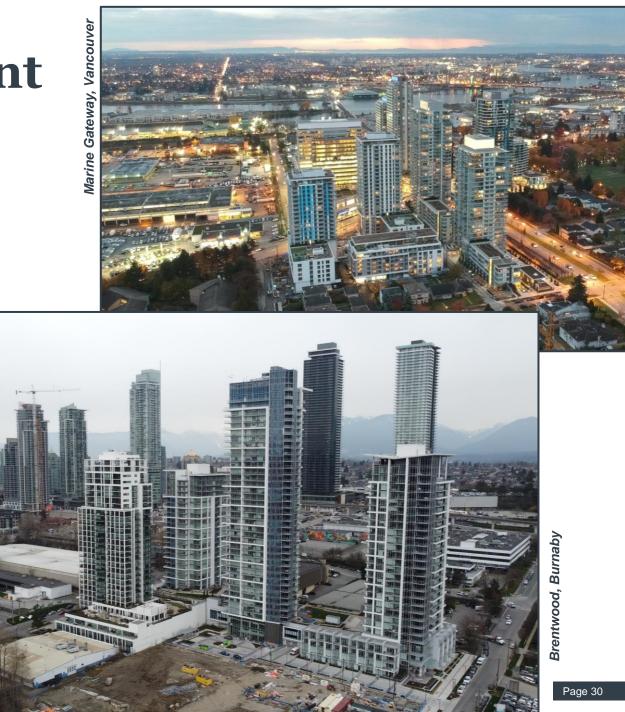

Cement is a Strategic Local Asset

- Cement will continue to be required in all Metro Vancouver / BC infrastructure
- Want to see continued support for **locally produced cement and concrete** in housing, water & sewer utilities, public transportation, renewable energy, industry
- COVID-19 has highlighted the need for domestic manufacturing

Jobs and Investment

- Supports more than 23,000 direct and indirect jobs in BC
- \$11 billion in direct, indirect and induced economic impact

Concrete



 7-15% cement is added to water, sand and gravel

 but cement comprises 60% to 80% of the carbon footprint of concrete

Concrete as an important building material

- All construction requires concrete
- Twice as much concrete is used than all other materials combined
 - over 20 billion tonnes / 8 billion m³ of concrete produced globally each year
 - using 4 billion tonnes of cement
 - Second most consumed material in the world, second only to water
- Concrete is inherently a local material

Content

- Climate Change
- Cement Manufacturing Process
- Concrete
- Decarbonizing Cement and Concrete
- Portland Limestone Cement (PLC) and SCMs
- C&D Recycling Concrete, Lower Carbon Fuels
- Thank you

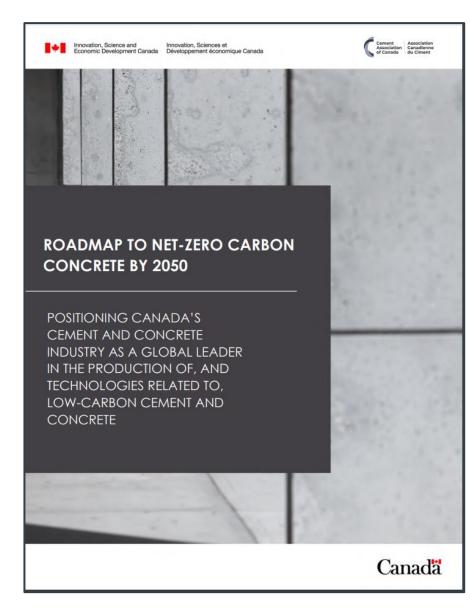
Our challenge is reducing GHGs in the cement, concrete and construction industry

• Net-Zero Carbon Concrete Action Plan and the "5-Cs":

Clinker, Cement, Concrete, Construction, re-Carbonation

Key areas to reduce GHG emissions:

- Produce lower carbon intensity cement (e.g. PLC, blended cement)
- Transition from fossil fuels (coal, natural gas) to lower carbon and biogenic fuels (e.g. urban woodwaste, wastewater biosolids)
- **capture CO₂ emissions**, including irreducible process emissions
- Use higher levels of supplementary cementitious materials (SCMs)
- Use concrete effectively in construction
- Maximize re-carbonation of concrete at end-of-life


Canadian Cement Industry Partnering with Federal & Provincial Governments to Lower Carbon Footprint

- **1.** Canada's Cement Industry and the Government of Canada have partnered to establish Canada as a global leader in low-carbon cement and to achieve net-zero carbon concrete.
- 2. A reduction of 15 Megatonnes of GHGs needs to be achieved by 2030. On-going additional reductions of 4 Megatonnes a year.
- **3.** We are proud partners of an Industry-Government Working Group that includes the NRC, the SCC, and ISED* that are working together on broad adoption of Green Procurement Rules with the Treasury Board of Canada Secretariat.

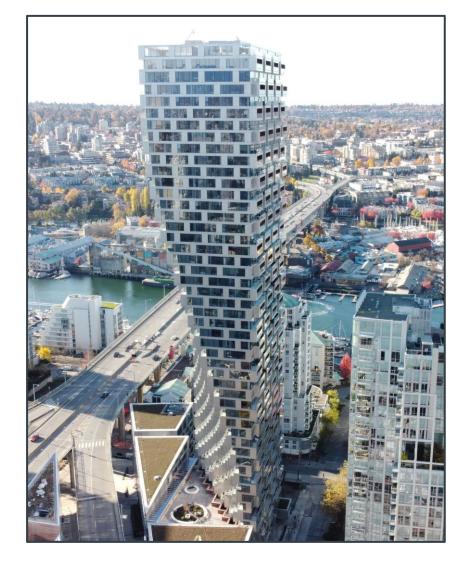
*NRC – Natural Resources Canada SCC – Standards Council of Canada ISED – Innovation, Science and Economic Development

ISED Roadmap to Net-zero Carbon Concrete

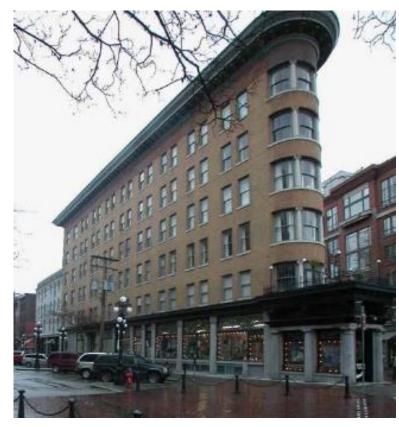
Roadmap to Net-zero Carbon Concrete by 2050

- co-led by Federal Ministry of Innovation, Science and Economic Development (ISED) and the Cement Association of Canada
- working group includes representatives from the federal government, the Canadian cement and concrete industry, and relevant environmental experts
- announced on Wednesday November 9, 2022 at Burnco site in Saskatoon François-Philippe Champagne, Minister of ISED Marie Glenn, Board Chair, Cement Association of Canada Adam Auer, President and CEO, Cement Association of Canada Tom Zeis, CEO, Burnco Rock Products

https://ised-isde.canada.ca/site/clean-growth-hub/en/roadmap-net-zero-carbon-concrete-2050


 ISED announcement is the start of a more detailed Roadmap implementation process across industry

Canadian Net-Zero Carbon Concrete


- Collaborative process across the industry, with Concrete BC Board, staff and member volunteers on 5 working groups:
 - 1. Clinker (e.g. lower carbon raw materials)
 - 2. Cement (e.g. higher substitution)
 - 3. Concrete (e.g. SCMs)
 - 4. Construction (e.g. additional optimization)
 - 5. Carbonation

Development of draft roadmap underway

Release of the Net-Zero Concrete Action Plan

Resilience, Durability and Longevity

Europe Hotel, Vancouver

Repurpose existing structures

- Built in 1908-09
- Restored and converted to affordable housing in 1983

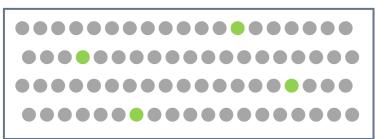
Build structures to a much higher standard of **durability**, **resilience**, and **longevity**

CN Tower, built in 1975 Life expectancy over 300 years

Page 37

Decarbonizing CEMENT?

- 80% of the industry's greenhouse gas (GHG) emissions originate from cement production
 - additional clinker substitution (e.g. higher limestone PLCs, blended cements, novel SCMs)
 - lower carbon fuels instead of coal and natural gas (e.g. waste derived biogenic fuels, green hydrogen, etc.)
 - decarbonated raw materials
- but ~60% of those cement emissions are generated from process/chemical calcination emissions
 - carbon capture, utilization and storage (CCUS)
 - access to significant funding and tax credits to support private sector investment


Content

- Climate Change
- Cement Manufacturing Process
- Concrete
- Decarbonizing Cement and Concrete
- Portland Limestone Cement (PLC) and SCMs
- C&D Recycling Concrete, Lower Carbon Fuels
- Thank you

Portland-Limestone Cement (PLC)

- PLC is made by <u>inter-grinding</u> clinker with up to 15% limestone, while regular cement contains 5% limestone
- PLC is a finer ground product than regular cement
- Reduces the embodied carbon of cement by up to 10%

Regular Portland Cement

ground clinker, precursor to cement
limestone (5%)

Portland-Limestone Cement

= finely ground clinker
= finely ground limestone (15%)

Portland-Limestone Cement (PLC)

- PLC produces concrete with the same durability and performance
- Code-approved and available across Canada
- Could reduce 1 million tonnes of GHG per year across Canada
- Benefits additive to carbon reductions from using SCMs like flyash, slag and silica fume
- GHG reduction potential of up to 10% for PLC and over 30% when used with other SCMs

Supplementary Cementitious Materials (SCMs)

- SCMs reduce the cement and clinker content of a concrete mix
- SCMs include waste flyash (from coal-fired power generation), slag from steel production, and silica fume from industrial processes
- The blending or inter-grinding of cement or Portland-limestone cement with up to three SCMs can produce a blended cement
- In general, mixtures perform in a manner that can be predicted by knowing the characteristics of the individual ingredients
- Benefits of concrete with SCMs include improved properties, lower cost and avoided GHG emissions

A Technical Introduction to PLC, May 2021

A TECHNICAL INTRODUCTION TO Portland-Limestone Cement

for Municipal and Provincial Construction Specifications

MAY 2021

Cement Association of Canada du Ciment

Portland-limestone Cement Technical Summary | 1

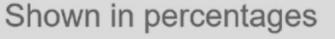
Contents

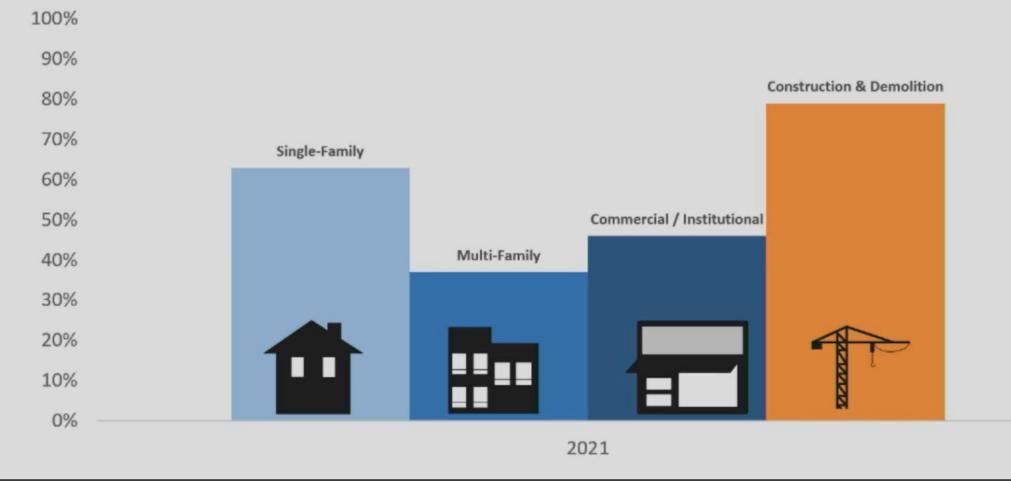
Introduction
What is Portland-limestone Cement?
Why Portland-limestone Cement?
How is Portland-limestone Cement Manufactured? 3
History of Portland-limestone Cement Use
Canadian Specifications for PLC
Testing and Performance
Workability
Setting Time
Particle Size Distribution
Strength
Freeze Thaw Durability and Scaling
Resistance to Chloride Penetration 6
Mitigating Alkali Silica Reactivity
Shrinkage
High Early Strength Gain
Sulphate Exposure
Use in Other Jurisdications
Use in Canada
Carbon Reduction Potential
Summary
Key Contacts
References
Appendix A: Project Examples A1

CONCRETE Build for life[®] Bâtir pour l'avenir[®] No charge from CAC

Page 43

Decarbonizing CONCRETE?


- Procurement
 - Support and education at Federal, Provincial and Municipal agencies to update procurement policies e.g. "Buy Clean", "Materials Innovation Hub", outcomes-based procurement practices, etc.
- Codes and Standards
 - Move towards Performance Based Codes, Standards and specifications (e.g. instead of minimum cement requirements, maximum SCMs, etc)
 - Changes to National Master Specifications
 - Standards Council of Canada (SCC) operates under ISED
- Innovation and Funding
 - Research and development (National Research Council of Canada also under ISED) and related R&D funding opportunities for the industry
 - harvesting, processing and use of impounded flyash
 - mineralization technologies
 - etc.
 - Support in accessing funding programs across government


Content

- Climate Change
- Cement Manufacturing Process
- Concrete
- Decarbonizing Cement and Concrete
- Portland Limestone Cement (PLC) and SCMs
- C&D Recycling Concrete, Lower Carbon Fuels
- Thank you

REGIONAL RECYCLING RATES BY SECTOR

Source: Metro Vancouver Zero Waste Committee – January 9, 2023

2021 SUMMARY

WASTE SECTOR		DISPOSED (tonnes)			RECYCLED (tonnes)			RECYCLING RATE (%)			
		2019	2020	2021	2019	2020	2021	2019	2020	2021	% change (2020- 2021)
Residential	tonnes	488,218	509,038	510,337	571,961	631,627	601,509	54%	55%	54%	-1%
	tonnes/capita	0.18	0.18	0.18	0.21	0.23	0.21				
Single Family	tonnes	254,516	269,485	266,999	439,730	485,419	455,723	63%	64%	63%	-1%
Multi-Family	tonnes	233,702	239,554	243,337	132,231	146,208	145,786	36%	38%	37%	-1%
Commercial/ Institutional	tonnes	385,073	354,268	372,861	289,764	278,507	316,406	43%	44%	46%	2%
	tonnes/capita	0.14	0.13	0.13	0.11	0.10	0.11				
Construction & Demolition	tonnes	425,713	382,007	371,972	1,329,696	1,350,904	1,433,933	76%	78%	79%	1%
Total	tonnes	1,299,005	1,245,314	1,255,169	2,191,421	2,261,038	2,351,848	63%	64%	65%	1%

C&D Recycling

Ken Carrusca @KenCarrusca

Staff from @MetroVancouver presenting report on recycling

Shows 866,363 tonnes of concrete recycled

yes concrete is "heavy" (ie dense)

but its recycling rate is very high, in the 95 to 97 % range

Q: Where can the region improve? A: Wood, with ~ 100,000 tonnes landfilled

Materials Type Recycled (tonnes)	2019	2020	2021
Asphalt	239,711	295,300	295,300
Batteries	12,423	12,952	13,858
Concrete	825,896	802,701	866,363
Electronic & Electrical Equipment	11,600	11,650	11,213
Paper/Paper Products	255,263	313,830	328,065
Glass	55,718	57,267	49,786
Gypsum	62,904	56,782	63,533
Household Hazardous Waste	22,213	20,406	21,292
Metal	55,708	73,636	73,369
Other/Mixed	15,006	7,001	
Plastic	38,275	44,587	43,849
Textiles	487	639	691
Tires	22,241	22,068	21,328
Wood	161,420	152,487	161,309
Yard & Food	412,556	389,732	401,890
Total	2,191,421	2,261,038	2,351,848

Source: Metro Vancouver Zero Waste Committee – January 9, 2023

1:26 PM · Feb 9, 2023 · 500 Views

Lower carbon fuels

- Making cement is an energy-intensive process
- Cement production requires temperatures of 1300 to 1400 °C
- Combustion emissions are from 30 to 40% of total emissions
- Conventional fuels include coal, and natural gas
- Alternative fuels include end-of-life automotive tires
- Lower carbon fuels include non-recyclable urban woodwaste, and other biomass, wastewater biosolids
- Emerging fuels include renewable natural gas and hydrogen
- Strong focus on transitioning to lower carbon, waste-based fuels
- Can reduce costs and lower GHG emissions

Urban woodwaste from residential demolition, Vancouver

Lower carbon fuels

- Can reduce costs and lower GHG emissions
- No post combustion residue, since ash by-products are irreversibly bound and form part of the final cement product
- **3Ts of combustion** Time, Temperature and Turbulence are very easily achieved in a large volume, high-temperature cement kiln
- Process control systems ensure stability of combustion process
- Continuous emissions monitoring systems (CEMS) monitor environmental performance

Content

- Climate Change
- Cement Manufacturing Process
- Concrete
- Decarbonizing Cement and Concrete
- Portland Limestone Cement (PLC) and SCMs
- C&D Recycling Concrete, Lower Carbon Fuels
- Thank you

Thank you

Ken Carrusca, P.Eng. Vice President, Environment & Marketing Cement Association of Canada Suite 400, 744 West Hastings Street Vancouver, BC V6C 1A5 Cell: 1-604-839-6627 Email: <u>KCarrusca@Cement.ca</u> Twitter: @KenCarrusca

