

For a zero-waste future

Lafarge Richmond: Using Waste as a Resource

Our mission: a cleaner environment and a zero-waste future Our solution: take one industry's waste, and transform it into another's fuel and raw material

Lafarge Richmond Cement Plant

- Plant in operation for over 60 years with 1M tonne/year cement production capacity
- Mature alternative fuels program 20 years
- \$25M investment in new alternative fuel co-processing platform to provide 52% of the thermal energy requirements to manufacture cement
- New AF System was commissioned in Spring 2019.
- Typical Alternative Fuels:
 - Non-recyclable plastics
 - Construction/demo
 - ► Tire fibre
 - Wood residues (glues)
 - Carpet, Mattress...
 - Permitting/Regulatory Authority: Metro Vancouver

What Does Geocycle Do?

Recovering the thermal & chemical value of waste

Material recovery

- Partner with regulatory bodies, governments, communities, industry in more than 50 countries
- Recover and process waste, creating alternative fuel and raw material
- Fuel and material then used by LafargeHolcim and other cement plants

14 million

Tons of waste used as alternative fuel and material

Co-processing

- Cement production process offers simultaneous
 energy recovery and material recycling
- Completely destroys waste materials even hazardous types – through high temperatures, oxygen excess and long residence time.

15 Percent

of fossil fuels substituted with alternative fuels globally; plan to double that by 2030

The Geocycle Global Network

18% of thermal energy from alternative fuels (2018)

50 countries with waste management business

11 Mio Tons of co-processed waste (2018) 8 Mio Tons of Net CO₂ emission saved (2018)

Geocycle in NA

Examples of Wastes Managed by Geocycle

- Biomass
- Calcium fluoride
- Carbon fines
- Contaminated soil
- Gypsum Drywall
- Diatomaceous earth
- ETP sludge
- Asphalt Shingles
- Expired food/health products
- Expired consumer goods
- Forestry Residues

geocycle

- Filter cake
- Fly ash & bottom ash
- Foundry sand
- Mill scale
- Oily wastes
- Packaging materials
- Paint wastes
- Plastics
- RDF fluff & pellets
- Redmud
- Construction and Demo (MRF) waste
- Mattresses

- Refinery wastes
- Rubber wastes
- Wood, Paper, Cardboard
- Sorted municipal solid waste
- Solvents
- Spent carbon
- Spent pot liner
- Textile waste
- Tires
- Rubber wastes
- Rail ties
- Used oil & grease

Cement Manufacturing Process

geocycle

What is Pre-processing?

Pre-processing is needed to convert a wide variety of waste streams into a homogeneous in spec product suitable for co-processing in cement kilns.

What is Co-processing?

© 2015 Geocycle

Unique Technology and Services: Co-Processing at a Cement Kiln

The Cement Kiln Can be a Superior Approach

Appropriate and efficient for recovering minerals & energy

Provides complete neutralization of any "acid gas"

- Since waste materials are in contact with a large flow of alkaline (basic) materials (limestone)
 - * Some volatile heavy metals not completely immobilized so inputs are limited

** Excess in chlorine or alkali may be removed as CKD

Recovering the Thermal & Chemical Value of Waste

Waste Management Hierarchy

From an environmental performance perspective, co-processing:

- Significantly reduces greenhouse gas emissions
- Is better than landfilling or incineration, as demonstrated by life-cycle assessment studies

geocycle Presentation title, Function, Name, 2015-01-01

Co-Processing

Substitution of primary fuel and raw material by waste-derived materials in industrial processes

Leaves no residue

Combustible part of waste provides the fuel needed for clinker manufacturing and minerals substitute primary mineral materials (e.g. limestone, clay, sand, iron correctives)

- All of the material input is recovered or recycled in production Happens at a higher temperature and higher residence time
- Energy recovery efficiency is much higher than incineration

Incineration

Disposal technology to reduce waste volumes and the potential negative impact of the waste material

- Leaves large quantities of ash that need to be landfilled
- A typical process leaves up to 30% residues (ashes, often hazardous) that need disposal
- Energy recovery efficiency is much
 lower than co-processing

Alternative Fuel and Raw Material Criteria

- Internal Approval and External Approvals required before use of any alternative fuel or raw material. Expect process to take 6-12 months from start to final approval
 - Metro Vancouver is regulatory authority
- Chemically compatibility
- Physical characteristics, handling and process introduction
- Environmental considerations
- Health and safety factors
- Financial considerations
- Key Quality Indicators

Low Carbon Fuel System

Richmond Cement Plant

Richmond Cement Plant (Biosolids silo)

Richmond Cement Plant

Richmond Cement Plant

